Molded Case Circuit Breakers

Molded Case Switch — Circuit Disconnect

Maximum Frame Rating	2-Pole	3-Pole	Self-Protective Instantaneous Override $\pm 20 \%{ }^{\text {® }}$
	Catalog Number	Catalog Number	
100A	$\begin{aligned} & \text { BQ2S060■ } \\ & \text { BQ2S100■ } \end{aligned}$	$\begin{aligned} & \text { BQ3S060■ } \\ & \text { BQ3S100■ } \end{aligned}$	$\begin{aligned} & \text { 1000A } \\ & 1000 \mathrm{~A} \end{aligned}$
125A	ED22S100A ED42S100A ED42S125A ED62S100A CED62S100A CED62S125AI	ED23S100A ED43S100A ED43S125A ED63S100A ED63S125A CED63S100AE CED63S125A	1000A 1000A 1000A 1000A 1000A 1000A 1000A
225A	QJ22S225A■	QJ23S225A	2000A
250	$\begin{aligned} & \text { FXD62S250A } \\ & \text { HFXD62S250A } \end{aligned}$	$\begin{aligned} & \text { FXD63S250A } \\ & \text { HFXD63S250A■ } \end{aligned}$ CFD63S250A■	$\begin{aligned} & 3200 \mathrm{~A} \\ & 3200 \mathrm{~A} \\ & 3200 \mathrm{~A} \end{aligned}$
400	JXD22S400AI - (1)	$\begin{aligned} & \text { JXD23S400A } \\ & \text { JXD63S400A } \\ & \text { HJXD63S400A■ } \\ & \text { CJD63S400A■ } \end{aligned}$	$\begin{aligned} & \text { 6000A } \\ & \text { 6000A } \\ & 6000 A \\ & 6000 A \end{aligned}$
600	$\overline{-}$	LXD63S600A HLXD63S600A■ CLD63S600AI	$\begin{aligned} & \text { 8000A } \\ & \text { 8000A } \\ & 8000 \mathrm{~A} \end{aligned}$
800	$\overline{-}$	LMXD63S800A MXD63S800A CMD63S800A	10000A 10000A 10000A
1200	(1)	NXD63S120A CND63S120AI	$\begin{aligned} & \hline 10000 \mathrm{~A} \\ & 10000 \mathrm{~A} \end{aligned}$
1600	${ }^{1}$	PXD63S160A	10000A
2000	${ }^{(1)}$	RXD63S200A■	10000A
Non Automatic Molded Case Switch			
2000	(1)	TD63S2000■	-
2500	${ }^{1}$	TD63S2500■	-
3200	(1)	TD63S3200■	-
4000-5000	See "SB" Type Insulated Case Breakers		

Ordering Information

Order by catalog number. Switches include frame and self protective (except TD) trip unit only. Order lugs separately from pages 6-70 to 6-72.

[^0]- Built to order. Allow 3-4 weeks for delivery.
(1)For 2-pole application use outside poles of 3-pole circuit breaker.
(2)For additional lugs see pages 6-70 to 6-72.

Molded Case Circuit Breakers

Digital Solid State Sentron Sensitrip III Series

The Sentron Sensitrip III circuit breaker is a true RMS current sensing device. Digital microprocessor circuitry within the electronic trip unit provides more precise control over the circuit breaker functions. This control allows circuit coordination flexibility not available with thermal magnetic circuit breakers

Functions available in Sentron Sensitrip circuit breakers.

Catalog Number (Description + Suffix)	Trip Type	Cont Current Setting	Long Time Delay	Instantaneous Setting	Short Time Pick Up	Short Time Delay	Short Time ${ }^{12} \mathbf{t}$ Pick Up	Ground Fault Pick Up	Ground Fault Delay
Basic Unit + (A)	LI	\checkmark	*	\%	-	-	-	-	-
Basic Unit + (A)G	LIG	*	V	\checkmark	-	-	-	\checkmark	*
Basic Unit + (A)NT	LSI	\checkmark	V	\forall	*	F	*	-	-
Basic Unit + (A)NGT	LSIG	\checkmark	\forall	\forall	\downarrow	\checkmark	\checkmark	\checkmark	\checkmark

etter " A " is used for MD and ND Solid State frame types only.

Typical Trip Unit Labeling and Adjustment Positions for the Sentron Sensitrip Circuit Breaker.

SMD6, SHMD6, SCMD6, SND6, SHND6, SCND6, SPD6, SHPD6

$\begin{aligned} & 800 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{n}}=800 \mathrm{~A} \end{aligned}$	Continuous Amps Long Time Delay Secs.@ 12.20 $6 \times I_{r}$	Short Time Pickup $x_{r} \quad 4,5$	Instantaneous Pickup $x_{r} \quad 8,10$	Push To Trip
Use TS31 Test Set \square				
		Short Time Delay Secs.		

SJD6, SHJD6, SCJD6, SCD6, SHLD6, SCLD6

$I_{n}=$ Maximum circuit breaker ampere rating
$I_{r}=$ Current Rating - a function of continuous ampere adjustment setting expressed in $\%$ of I_{n}.
$I_{g}=$ Ground Fault Pickup - a function of adjustment setting expressed in $\%$ of I_{n}.

Digital Solid State Sentron Sensitrip III Series

D．Adjustable＂Short Time Pick－Up＂Switch（Optional） Sensitrip III circuit breakers with an adjustable short time pick－up switch allow for selection of short time pick－up in a range from 1.5 to 10 times the setting of the maximum current rating．
E．Adjustable＂Short Time Delay＂Switch（Optional）
Sensitrip III circuit breakers with an adjustable short time pick－up switch also contain a switch for adjustment in time delay．The adjustable short time delay switch allows for either of two modes of short time delays．One range of settings enables the breaker to be set for fixed time delays and the other range of settings enables the breaker to be set for short time delays based on $\mathrm{I}^{2} \mathrm{t}$ curves．
$I_{n}=$ Maximum circuit breaker ampere rating．
$I_{r}=$ Current Rating — a function of adjustment setting expressed in \％of I_{n} ．
$I_{g}=$ Ground Fault Pick－up — a function of adjustment setting expressed in $\%$ of I_{n} ．

Examples of Adjustment Settings

Catalog Number SMD69800A

	Continuous Current Setting	Long Time Delay Setting	Instantaneous Setting
$\mathbf{I}_{\mathbf{n}}=\mathbf{8 0 0}$	30	12	8
$\mathrm{I}_{\mathrm{n}}=800$ amperes	240 amperes	12 seconds trip	1920 amperes
Results	at 6×240 amps $=1440$.	$8 \times I_{r}=8 \times 240$	

Catalog Number SMD69800ANGT

I_{n}	$\begin{aligned} & \mathrm{I}_{\mathrm{r}} \\ & \text { Setting } \end{aligned}$	Long Time Delay	Short Time Pick－Up Off	Instantaneous Setting	Short Time Pick－Up On	Short Time Delay	$\begin{aligned} & { }^{12} \mathbf{T} \\ & \text { Set } \end{aligned}$	Ground Fault Pick－Up	Ground Fault Delay
800 amperes Results	$\begin{array}{r} 70 \\ 560 \\ \hline \text { (2) } \end{array}$	$\begin{aligned} & 20 \\ & 20 \mathrm{sec} . \\ & \text { ©. } \end{aligned}$	$-$	$10 I_{r}$ 5600A	$8 I_{r}$ 4480A © ${ }^{-}$	$\begin{aligned} & .5 \\ & .5 \text { secs } \\ & \text { (2) } \end{aligned}$	$.28 \text {. } 28 \mathrm{sec} @ 4480 \mathrm{~A}$	$\begin{aligned} & 40 \\ & 320 \mathrm{~A} \end{aligned}$	$\begin{aligned} & .2 \\ & .2 \mathrm{sec} \end{aligned}$

（1）$I_{n}=800$ amperes．
（2）$I_{r}=560$ amperes（ 70% of 800 ）．
（2）．Delay $=20$ seconds at $3360 \mathrm{amps}\left(6 \times \mathrm{I}_{\mathrm{r}}\right)$ ． Breaker will trip in 20 seconds with 3360 amperes．
（4）Short Time Pick－Up Off－Instantaneous can be used．
（5）．Instantaneous set at $10 \times I_{r}=10 \times 560=5600$ amperes．
（2）Short Time Pick－Up On－Set at $8=8 \times 560=4480$ amperes．
（2）－Short Time Delay $=.5$ seconds．（Definite Time）
Note：（8）\＆（8）are mutually exclusive．
（8）${ }^{2}$ t switch on .28 seconds＠ $6 \times 560=3360$ amperes． （Inverse time）
（2）－Ground Fault Pick－Up set at $40=40 \%$ of $\mathrm{I}_{\mathrm{n}}=320$ amperes．（Definite Time）
（0）．Ground Fault Delay set at .2 seconds．Breaker will trip in 200 milliseconds with a 400 ampere ground fault．

[^0]: Lugs pages $6 / 70$ to $6 / 71$
 Accessories pages 6/74 to 6/86

